x = 6.736
Solution:
The image attached below.
Given ∠A = 80°, ∠C = 40° and side a = 5.
Let us first find the measure of ∠B.
Sum of the angles of a triangle = 180°
⇒ ∠A + ∠B + ∠C = 180°
⇒ 80° + ∠B + 40° = 180°
⇒ ∠B + 120° = 180°
⇒ ∠B = 180° – 120°
⇒ ∠B = 60°
Let us find the side c using sine law,
![(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ozmoc3yrfpwhwvzkohhld8yssz459mgsuu.png)
⇒
![(x)/(\sin 60^(\circ))=(5)/(\sin 40^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lulhins4xlzw1vriprsn78z6vwx9ncppx6.png)
⇒
![x=(5* \sin 60^(\circ))/(\sin 40^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/rpfvm941c4t6fo8339ug3phphbrrrb8ymw.png)
⇒
![x=(5 * (√(3))/(2))/(0.6428)](https://img.qammunity.org/2021/formulas/mathematics/high-school/98stwgdhhycipegsxotyahhe4rblp6f2vp.png)
⇒
![x=\frac{5 * √(3)}{2* {0.6428}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/i8zmfhykyqm5u2ucbrs9nbusgig772prce.png)
⇒ x = 6.736
Hence, the value of x is 6.736.