221k views
1 vote
To what tension (in newtons) must you adjust the screw so that a transverse wave of wavelength 3.33 cm makes 621 vibrations per second?

1 Answer

4 votes

Answer:

T=9.4 N

Step-by-step explanation:

We are given that

Mass of wire,m=16.5 g=
(16.5)/(1000)kg

1 kg=1000g

Length of wire,l=75 cm=
75* 10^(-2)m

1 m=100 cm

Wavelength of transverse wave=
\lambda=3.33 cm=3.33* 10^(-2)m

Frequency=
621 Hz

Mass per unit length=
m_l=(m)/(l)=(16.5)/(1000* 75* 10^(-2))=0.022 kg/m


\\u=(v)/(\lambda)


v=\\u \lambda

Where
\\u=frequency of wave


\lambda=Wavelength of wave

Speed of wave=v

Using the formula


v=3.33* 10^(-2)* 621=20.7m/s


v=\sqrt{(T)/(m_l)}


v^2=(T)/(m_l)


T=v^2m_l

Using the formula


T=(20.7)^2* 0.022=9.4N

Hence, the tension,T=9.4 N

User Aarju Mishra
by
5.1k points