14.6k views
2 votes
If tan ⁡x=12/5, and 0°

If tan ⁡x=12/5, and 0°-example-1

1 Answer

4 votes

The value of sin(2x) is
(120)/(169)

Step-by-step explanation:

Given that
tan x =(12)/(5)

The formula for
sin(2x) is
\sin (2 x)=2 \sin x \cos x

Since,
\tan x=(o p p)/(a d j)

Also, it is given that
tan x =(12)/(5)

Thus,
opp=12 and
adj=5

To find the hypotenuse, let us use the pythagoras theorem,


\begin{aligned}h y p &=\sqrt{12^(2)+5^(2)} \\&=√(144+25) \\&=√(169) \\&=13\end{aligned}

Now, we can find the value of sin x and cos x.


\sin x=\frac{\text { opp }}{h y p}=(12)/(13)


\cos x=(a d j)/(h y p)=(5)/(13)

Now, substituting these values in the formula for sin 2x, we get,


\begin{aligned}\sin (2 x) &=2 \sin x \cos x \\&=2\left((12)/(13)\right)\left((5)/(13)\right) \\&=(120)/(169)\end{aligned}

Thus, the value of sin(2x) is
(120)/(169)

User Mohsen Emami
by
5.3k points