Answer:
Power generated will be equal to 1054.046 watt
Step-by-step explanation:
We have given mass m = 0.129 kg
Length of the rope = 3.70 m
So mass density
![\mu =(m)/(l)=(0.129)/(3.7)=0.0348kg/m](https://img.qammunity.org/2021/formulas/physics/college/zfv4h6tl6daxw6wjveywsewge1319tf4w7.png)
Amplitude A = 0.200 m
Wavelength = 0.600 m
Velocity of the wave v = 24 m/sec
So frequency
![f=(v)/(\lambda )=(24)/(0.600)=40Hz](https://img.qammunity.org/2021/formulas/physics/college/409311ijvveak50qavz44dks6f603l1kpf.png)
Now angular frequency will be equal to
![\omega =2\pi f=2* 3.14* 40=251.2rad/sec](https://img.qammunity.org/2021/formulas/physics/college/sxd6bat30hlys49gvujeynfg9ez8i2gafi.png)
We have to fond the generated power
Power will be equal to
![P=(1)/(2)\mu \omega ^2A^2v=(1)/(2)* 0.0348* 251.2^2* 0.2^2* 24=1054.046watt](https://img.qammunity.org/2021/formulas/physics/college/znr6glzj0m3xz3iezrwycojuxvzkhjj5vy.png)
So power generated will be equal to 1054.046 watt