Answer:
m=2 and n=3
Explanation:
Step :-
Given
![[ 2 x^(n)y^(2) ]^m = 4 x^6 y^4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qhfzqhrmnxal6kqwoahlqqsxza7jj3fsfe.png)
using algebraic formula

now

now equating 'x' powers, we get

....(1)
now

Equating 'y' powers ,we get
2 m=4
m=2
substitute m= 2 in equation (1)
we get
2 n=6
n=3
verification:-
substitute m=2 and n=3 , we get
![[ 2 x^(n)y^(2) ]^m = 4 x^6 y^4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qhfzqhrmnxal6kqwoahlqqsxza7jj3fsfe.png)


both are equating so m= 2 and n=3