![\huge \tt \color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }](https://img.qammunity.org/2023/formulas/mathematics/high-school/8h8sr5ek0iyhhhbnolchkl678bc6kccesq.png)
➣Given
- ➣shipping carton basically shape is rectangular prism type
- ➣its volume (shipping carton)=72in²
- ➣its height =3in
- ➣its width = 4in
- ➣ assumption :- length "c"
![\boxed{ \pink✠\underline{ \boxed{ \sf{Volume \: of \: Rectangular \: prism=length × width × height.}}} \pink✠}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t383p89wi07pvwba76uj6vo3ray21ux8uu.png)
![\rule{80mm}{2.5pt}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i170r6p5q7784sxoxzhchkpcktej60f1fc.png)
★ Let's substitute values according to given info
![\qquad \sf \: ➛ 72 = c * 4 * 3 \\ \qquad \sf \: ➛72 = c * 12 \\ \qquad \sf \: ➛transporting \: 12 \: in \: divide \\ \qquad \sf \: ➛ (72)/(12) = c \\ \qquad \sf \: ➛ \cancel(72)/(12) = c \\ \qquad \sf \: ➛6 = c](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ank9bmdx55ko2zv7ktzee7hm8q2w553t9.png)
![\rule{80mm}{2.5pt}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i170r6p5q7784sxoxzhchkpcktej60f1fc.png)
★ Hence "c" (length) of Rectangular prism (shipping carton) is
![\boxed{ \blue✜\underline{ \boxed{ \sf{length(c)= 6inch \green✓}}} \blue✜}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2jn8rq0dukjk6gmt9vjtcetvnycclxl0x2.png)
Hope it helps !