169k views
2 votes
Harry Potter approaches with a strange bag full of balls, numbered 1 to k. As you reach in to pick one, he notes that they are not all equally likely because of magic: ball 1 is least likely to be chosen, with probability c, where c is some constant. Ball 2 has probability 2c, Ball 3 has probability 3c, . . . , Ball k − 1 has probability (k − 1)c, and Ball k has probability kc.

1. What is the expected value of the ball number you pick? Your answer can’t use the constant c, but will use k.

User Karoh
by
5.5k points

1 Answer

5 votes

Answer:

[k*(k+1)*(2*k+1)] / 6

Explanation:

We have balls numbered as: 1, 2, 3, ... , k with probabilities as: c, 2*c, 3*c, ... , k*c

Let Y be the discrete random variable defined as: Y = ball number

We know that Expected value of discrete Random Variable is:

E[X] = Σ₁ⁿ xₐ*f(xₐ) ,where f(xₐ) is probability of xₐ

then,

E[Y] = 1*c + 2*2*c + 3*3*c + ... + k*k*c

E[Y] = c*(1 + 2*2 + 3*3 + ... + k*k)

E[Y] = c*(1^2 + 2^2 + 3^2 + ... + k^2)

consider c = 1 (because it's constant so you can suppose any you wish)

E[Y] = 1^2 + 2^2 + 3^2 + ... + k^2

using formula of first n squares natural numbers (as attached picture)

E[Y] = [k*(k+1)*(2*k+1)] / 6

Harry Potter approaches with a strange bag full of balls, numbered 1 to k. As you-example-1
User Abilash
by
6.1k points