115k views
2 votes
Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you to clear the entries below each pivot or of the operations that allow you to swap two rows or to scale a row.

1) 3x₂ - 5x₃ = 89
6x₁ + x₃ = 17
x₁ - x₂ + 8x₃ = -107
2) 4x₁ - x₂ + 3x₃ = 12
2x₁ + 9x₃ = -5
x₁ + 4x₂ + 6x₃ = -32

1 Answer

7 votes

Answer:

1) The solution of the system is


\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) The solution of the system is


\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

Explanation:

1) To solve the system of equations


\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right

using the row reduction method you must:

Step 1: Write the augmented matrix of the system


\left[ \begin{array}ccc 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 2: Swap rows 1 and 2


\left[ \begin{array}ccc 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 3:
\left(R_1=(R_1)/(6)\right)


\left[ \begin{array}ccc 1 & 0 & (1)/(6) & (17)/(6) \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 4:
\left(R_3=R_3-R_1\right)


\left[ \begin{array}c 1 & 0 & (1)/(6) & (17)/(6) \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & (47)/(6) & - (659)/(6) \end{array} \right]

Step 5:
\left(R_2=(R_2)/(3)\right)


\left[ \begin{array}c 1 & 0 & (1)/(6) & (17)/(6) \\\\ 0 & 1 & - (5)/(3) & (89)/(3) \\\\ 0 & -1 & (47)/(6) & - (659)/(6) \end{array} \right]

Step 6:
\left(R_3=R_3+R_2\right)


\left[ \begin{array}ccc 1 & 0 & (1)/(6) & (17)/(6) \\\\ 0 & 1 & - (5)/(3) & (89)/(3) \\\\ 0 & 0 & (37)/(6) & - (481)/(6) \end{array} \right]

Step 7:
\left(R_3=\left((6)/(37)\right)R_3\right)


\left[ \begin{array}ccc 1 & 0 & (1)/(6) & (17)/(6) \\\\ 0 & 1 & - (5)/(3) & (89)/(3) \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 8:
\left(R_1=R_1-\left((1)/(6)\right)R_3\right)


\left[ \begin{array}c 1 & 0 & 0 & 5 \\\\ 0 & 1 & - (5)/(3) & (89)/(3) \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 9:
\left(R_2=R_2+\left((5)/(3)\right)R_3\right)


\left[ \begin{array}c 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 10: Rewrite the system using the row reduced matrix:


\left[ \begin{array}ccc 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) To solve the system of equations


\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right

using the row reduction method you must:

Step 1:


\left[ \begin{array}c 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 2:
\left(R_1=(R_1)/(4)\right)


\left[ \begin{array}ccc 1 & - (1)/(4) & (3)/(4) & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 3:
\left(R_2=R_2-\left(2\right)R_1\right)


\left[ \begin{array}c 1 & - (1)/(4) & (3)/(4) & 3 \\\\ 0 & (1)/(2) & (15)/(2) & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 4:
\left(R_3=R_3-R_1\right)


\left[ \begin{array}ccc 1 & - (1)/(4) & (3)/(4) & 3 \\\\ 0 & (1)/(2) & (15)/(2) & -11 \\\\ 0 & (17)/(4) & (21)/(4) & -35 \end{array} \right]

Step 5:
\left(R_2=\left(2\right)R_2\right)


\left[ \begin{array}ccc 1 & - (1)/(4) & (3)/(4) & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & (17)/(4) & (21)/(4) & -35 \end{array} \right]

Step 6:
\left(R_1=R_1+\left((1)/(4)\right)R_2\right)


\left[ \begin{array}{cccc} 1 & 0 & (9)/(2) & - (5)/(2) \\\\ 0 & 1 & 15 & -22 \\\\ 0 & (17)/(4) & (21)/(4) & -35 \end{array} \right]

Step 7:
\left(R_3=R_3-\left((17)/(4)\right)R_2\right)


\left[ \begin{array}ccc 1 & 0 & (9)/(2) & - (5)/(2) \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - (117)/(2) & (117)/(2) \end{array} \right]

Step 8:
\left(R_3=\left(- (2)/(117)\right)R_3\right)


\left[ \begin{array}{cccc} 1 & 0 & (9)/(2) & - (5)/(2) \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 9:
\left(R_1=R_1-\left((9)/(2)\right)R_3\right)


\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 10:
\left(R_2=R_2-\left(15\right)R_3\right)


\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 11:


\left[ \begin{array}ccc 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

User David Reis
by
3.9k points