53.3k views
1 vote
Find the maximum value or minimum value for the function f(x) = 0.15(x + 1)² - 3.

0.15
3
1
-3

1 Answer

2 votes

Answer:

The minimum value for
f(x) = 0.15(x + 1)^2 - 3 is
-3.

Explanation:

Given function is
f(x) = 0.15(x + 1)^2 - 3

We need to find the maximum value or the minimum value for the function.

Now, differentiate
f(x) = 0.15(x + 1)^2 - 3 w.r.t
x.


f'(x) =(d)/(dx)(0.15(x + 1)^2 - 3)\\f'(x)=(d)/(dx)(0.15(x+1)^2-(d)/(dx)(3)\\


f'(x)=2* 0.15(x+1)(d)/(dx)(x+1)-0\\f'(x)=0.3(x+1)(1)\\f'(x)=0.3(x+1)

Now, we will equate
f'(x)=0 to find critical point.


0.3(x+1)=0\\x=-1

Plug this critical point in to the function
f(x) = 0.15(x + 1)^2 - 3 we get,


f(-1) = 0.15(-1 + 1)^2 - 3\\f(-1)=-3

Also,
f''(x)=0.3 which is positive, We have minimum value.

So, the minimum value for
f(x) = 0.15(x + 1)^2 - 3 is
-3.

User Sweet Suman
by
8.3k points