Step-by-step explanation:
Atomic number of carbon is 6 and its electronic distribution is 2, 4. As there are 4 valence electrons present in a carbon atom. Hence, it belongs to group 14 of the periodic table.
So, being a non-metal carbon atom tends to form covalent bonds. Also, the electronegativity value of carbon atom is mid-way between those of metals and non-metals.
In order to complete its octet, carbon atom tends to gain or share its 4 valence electrons. Therefore, it forms four bonds in all its compounds.
The Si-Si bond will be less stronger than C-C bond due to the larger size of silicon atom. As a result, there will be less overlapping between the silicon atoms due to which the bond formed will be weak in nature.
Whereas C-C bond is more stronger as a carbon atom is smaller in size as compared to silicon atom. As a result, more will be the overlapping between the carbon atoms. Hence, more stronger will be C-C bond than Si-Si bond.
As there will be covalent bonds present in a carbon chain and these bonds are weak as compared to ionic bonds. Hence, relatively little heat is released when a C chain reacts and one bond replaces the other.
Thus, we can conclude that out of the given options statements of I, II, III and V are true.