Answer:
11548KJ/kg
10641KJ/kg
Step-by-step explanation:
Stagnation enthalpy:
![h_(T) = c_(p)*T + (V^2)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/zunv0mwsgbu93w6x8bbvh8qtrfp9zs7v85.png)
given:
cp = 1.0 KJ/kg-K
T1 = 25 C +273 = 298 K
V1 = 150 m/s
![h_(1) = (1.0 KJ/kg-K) * (298K) + (150^2)/(2) \\\\h_(1) = 11548 KJ / kg](https://img.qammunity.org/2021/formulas/engineering/college/cymzvp8gnx2l9unrepzyk7gisouctlhwbo.png)
Answer: 11548 KJ/kg
Using Heat balance for steady-state system:
![Flow(m) *(h_(1) - h_(2) + (V^2_(1) - V^2_(2) )/(2) ) = Q_(in) + W_(out)\\](https://img.qammunity.org/2021/formulas/engineering/college/v76o02i0dp9fhlddd7c665qummk7ytc7uc.png)
Qin = 42 MW
W = -100 KW
V2 = 400 m/s
Using the above equation
![50 *( 11548- h_(2) + (150^2 - 400^2 )/(2) ) = 42,000 - 100\\\\h_(2) = 10641KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/b1zzy2bn55lxuaqgx6tgmnjbexy3ena2ws.png)
Answer: 10641 KJ/kg
c) We use cp because the work is done per constant pressure on the system.