159k views
1 vote
Find the tangent line approximation for 10+x−−−−−√ near x=0. Do not approximate any of the values in your formula when entering your answer below.

User Wosh
by
8.1k points

1 Answer

7 votes

Answer:


L(x)=√(10)+(√(10))/(20)x

Explanation:

We are asked to find the tangent line approximation for
f(x)=√(10+x) near
x=0.

We will use linear approximation formula for a tangent line
L(x) of a function
f(x) at
x=a to solve our given problem.


L(x)=f(a)+f'(a)(x-a)

Let us find value of function at
x=0 as:


f(0)=√(10+x)=√(10+0)=√(10)

Now, we will find derivative of given function as:


f(x)=√(10+x)=(10+x)^{(1)/(2)}


f'(x)=(d)/(dx)((10+x)^{(1)/(2)})\cdot (d)/(dx)(10+x)


f'(x)=(1)/(2)(10+x)^{-(1)/(2)}\cdot 1


f'(x)=(1)/(2√(10+x))

Let us find derivative at
x=0


f'(0)=(1)/(2√(10+0))=(1)/(2√(10))

Upon substituting our given values in linear approximation formula, we will get:


L(x)=√(10)+(1)/(2√(10))(x-0)


L(x)=√(10)+(1)/(2√(10))x-0


L(x)=√(10)+(√(10))/(20)x

Therefore, our required tangent line for approximation would be
L(x)=√(10)+(√(10))/(20)x.

User Li Dong
by
7.6k points