Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Step-by-step explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = (ds)/(dt) \\(ds)/(v) = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^(2) } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5√(2) ) ln \frac{| [s + 300 + \sqrt{(s^(2) + 600s)} ] |}{300} .......2](https://img.qammunity.org/2021/formulas/physics/college/vo6t5o4k38wlrgfqbhzj2jclf6cqgfrlto.png)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s