124k views
0 votes
For the data set: 0.09, 0.10, 0.11, 0.13, 0.09, 0.11, 0.10, 0.07 To obtain information of the precision of the data set the standard deviation would be:

a. 0.018
b. 0.022
c. 0.0166
d. 0.01

User Roger Liu
by
3.5k points

1 Answer

2 votes

Answer:

Option A is correct (0.018)

S.Dā‰…0.018

Step-by-step explanation:

Option A is correct (0.018)

General Formula for Standard Deviation is:


Standard\ Deviation=\sqrt{(\sum_(i=1)^(n)(x_(i)-\bar x)^2)/(n-1)}

Where:


x_(i) is the data value


\bar x is the mean/average of data

n is the total number of data elements

Calculating
\sum_(i=1)^(n)(x_(i)-\bar x)^2}


\bar x=(0.09+0.10+ 0.11+ 0.13+ 0.09+ 0.11+ 0.10+0.07)/(8) \\\bar x=0.1


\sum_(i=1)^(n)(x_(i)-\bar x)^2}=(0.09-0.1)^2+(0.1-0.1)^2+(0.11-0.1)^2+(0.13-0.1)^2+(0.09-0.1)^2+(0.11-0.1)^2+(0.1-0.1)^2+(0.07-0.1)^2\\\sum_(i=1)^(n)(x_(i)-\bar x)^2}=2.2*10^(-3)

Calculating n-1:

Total number of terms=8

n-1=8-1=7

Standard Deviation is:


S.D=\sqrt{(2.2*10^(-3))/(7)}\\S.D=0.0177

S.Dā‰…0.018

User Dgnin
by
3.7k points