123k views
2 votes
If the magnitude of the resultant force acting on the eyebolt is 570 N and its direction measured clockwise from the positive x axis is θ = 33 ∘, determine the magnitude of

User Marcwjj
by
5.2k points

1 Answer

4 votes

Answer:

F1 = 1210.65 N

Q = 65.7081 degrees

Step-by-step explanation:

Sum of Forces in x - direction:

F1 * cos (Q) + F2*sin(30) - F3*(3/5) = Fres*cos (theta)

F1 * cos (Q) + (500)*(0.5) - 450*(3/5) = 570*cos(33)

F1*cos (Q) = 498.0422237 N .... Eq1

Sum of Forces in y - direction:

F1 * sin (Q) - F2*sin (60) - F3 * (4/5) = Fres*sin (theta)

F1 * sin (Q) - 500*sin(60) - 450 * (4/5) = 570*sin (33)

F1 * sin (Q) = 1103.45692 N .... Eq 2

Divide Eq 2 by Eq 1

tan (Q) = 2.21558916

Q = arctan (2.21558916) = 65.7081 degrees

F1 = 1210.65 N

User Kristians
by
5.7k points