Answer:
Before redundancy :100101011100
After checking parity redundancy: 100101010011
Step-by-step explanation:
First calculate redundant bits ,
We know that the number of redundant bits can be calculated using the following formula:
2^r ≥ m + r + 1
r = redundant bit, m = data bit
total data bits = 8
so ,
2^4 ≥ 8 + 4 + 1
16 ≥ 13
so, redundant bits is 4
Now let they denoted by r1, r2, r4, and r8, as the redundant bits are placed at positions corresponding to power of 2: 1, 2, 4, and 8.
All the redundant bits are initialized by zero.
For the data word 10011011, we can let the bits of the data word as w8,w7, w6, w5, w4, w3, w2, w1
Now , put data bits and redundancy bits as follows.
d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1
w8 w7 w6 w5 r8 w4 w3 w2 r4 w1 r2 r1
1 0 0 1 0 1 0 1 0 0 0 0
r1 = d1 xor d3 xor d5 xor d7 xor d9 xor d11
r1 = 0 xor 0 xor 1 xor 1 xor 1 xor 0
r1 = 1
r2 = d2 xor d3 xor d6 xor d7 xor d10 xor d11
r2 = 0 xor 0 xor 0 xor 1 xor 0 xor 0
r2 = 1
r4 = d4 xor d5 xor d6 xor d7
r4 = 0 xor 1 xor 0 xor 1
r4 = 0
r8 = d8 xor d9 xor d10 xor d11 xor d12
r8 = 0 xor 1 xor 0 xor 0 xor 1
r8 = 0
So, the data transferred is
d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1
w8 w7 w6 w5 r8 w4 w3 w2 r4 w1 r2 r1
1 0 0 1 0 1 0 1 0 0 1 1
The bits give the binary number as 0011 whose decimal representation is 3. Thus, the bit 3 contains an error. To correct the error the 3th bit is changed from 1 to 0.