75.4k views
2 votes
Find four numbers that form a geometric progression such that the third term is greater than the first by 12 and the fourth is greater than the second by 36.

1 Answer

3 votes

Answer:

5 , 4.5, 13.5 and 40.5

Explanation:

Since the numbers are in geometric progression, their form is essentially:

a, ar, ar^2 and ar^3

Where a and r are first term and common ratio respectively.

From the information given in the catalog:

Third term is greater than the first by 12 while fourth is greater than second by 36.

Let’s now translate this to mathematics.

ar^2 - a = 12

ar^3 - ar = 36

From 1, a(r^2 - 1) = 12 and 2:

ar(r^2 - 1) = 36

From 2 again r[a(r^2 -1] = 36

The expression inside square bracket looks exactly like equation 1 and equals 12.

Hence, 12r = 36 and r = 3

Substituting this in equation 1,

a( 9 - 1) = 12

8a = 12

a = 12/8 = 1.5

Thus, the numbers are 1.5, (1.5 * 3) , (1.5 * 9), (1.5 * 27) = 1.5 , 4.5, 13.5 and 40.5

User David Ferris
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories