34.7k views
3 votes
I NEED HELP WITH THIS PROBLEM ASAP PLEASE!! THANK YOU VERY MUCH!! <3

I NEED HELP WITH THIS PROBLEM ASAP PLEASE!! THANK YOU VERY MUCH!! <3-example-1
User Leesrus
by
5.8k points

1 Answer

5 votes

Answer:

OPTION C

OPTION E

Explanation:

Distributive property of Addition:

a(b + c) = ab + bc

In other words, 'a' is distributed over 'b' and 'c'.

Also, note that a mixed fraction, of the form
$ \textbf{c} \frac{\textbf{x}}{\textbf{y}} = \textbf{c} + \frac{\textbf{x}}{\textbf{y}} $

If a mixed fraction is of the type
$ \textbf{-p}\frac{\textbf{q}}{\textbf{r}} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{-(p + } \frac{\textbf{q}}{\textbf{r}}) \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{-p} \hspace{1mm} \textbf{-} \hspace{1mm} \frac{\textbf{q}}{\textbf{r}} $

OPTION A:


\textbf{3} \bigg ( \textbf{-4} \frac{\textbf{1}}{\textbf{2}} \bigg )

This can be written as:
$ 3 \bigg ( - 4 - (1)/(2) \bigg ) $

Now, we distribute 3 over -4 and
$ -(1)/(2) $.


$ = 3(-4) + 3\bigg (-(1)/(2) \bigg ) $

Therefore, OPTION A is incorrect.

OPTION B:
$ \textbf{2} \frac{\textbf{1}}{\textbf{4}} \bigg ( \textbf{1} \frac{\textbf{3}}{\textbf{4}} \bigg ) $

Now, this is written as:
$ 2 + (1)/(2) \bigg ( 1 + (3)/(4) \bigg ) $

We have distribute 2 and
$ (1)/(2) $ separately over 1 and
$ (3)/(4) $.

So, we should have
$ 2 (1) + 2 \bigg ( (3)/(4) \bigg ) + (1)/(2) (1) + (1)/(2). (3)/(4) $

So, OPTION B is incorrect.

OPTION C:
$ \textbf{-4} \bigg( - 5 \frac{\textbf{1}}{\textbf{3}} \bigg ) $


$ = - 4 \bigg ( -5 - (1)/(3) \bigg) $


$ = -4(-5) + (-4) \bigg (- (1)/(3) \bigg ) $

Hence, OPTION C is correct.

Similar method will help us know that OPTION D has used the Distributive property incorrectly and OPTION E has.

So, the answers are:

OPTION A

OPTION C

OPTION E

User Aybars
by
5.7k points