Answer:
OPTION C
OPTION E
Explanation:
Distributive property of Addition:
a(b + c) = ab + bc
In other words, 'a' is distributed over 'b' and 'c'.
Also, note that a mixed fraction, of the form
![$ \textbf{c} \frac{\textbf{x}}{\textbf{y}} = \textbf{c} + \frac{\textbf{x}}{\textbf{y}} $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tno4m0724egr0biz5d2xmj9q1if96j6hrq.png)
If a mixed fraction is of the type
![$ \textbf{-p}\frac{\textbf{q}}{\textbf{r}} \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{-(p + } \frac{\textbf{q}}{\textbf{r}}) \hspace{1mm} \textbf{=} \hspace{1mm} \textbf{-p} \hspace{1mm} \textbf{-} \hspace{1mm} \frac{\textbf{q}}{\textbf{r}} $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r3hcpu29gf6don2hnmbuk7ws555vt599eh.png)
OPTION A:
![\textbf{3} \bigg ( \textbf{-4} \frac{\textbf{1}}{\textbf{2}} \bigg )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/21tx5g3byiruaru92zdiqx74eqc1gi72rm.png)
This can be written as:
![$ 3 \bigg ( - 4 - (1)/(2) \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/imvsqqle82144oitv5lymiw42gykzg41q1.png)
Now, we distribute 3 over -4 and
.
![$ = 3(-4) + 3\bigg (-(1)/(2) \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bipszhyww6t1iy9h8z49yni08rwca32mk9.png)
Therefore, OPTION A is incorrect.
OPTION B:
![$ \textbf{2} \frac{\textbf{1}}{\textbf{4}} \bigg ( \textbf{1} \frac{\textbf{3}}{\textbf{4}} \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r7fy2gj6g2vvdrueg07e03d9rv9pkah0w2.png)
Now, this is written as:
![$ 2 + (1)/(2) \bigg ( 1 + (3)/(4) \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dub8b2e7ajdfx4gbppn34kyc22ip1mumky.png)
We have distribute 2 and
separately over 1 and
.
So, we should have
![$ 2 (1) + 2 \bigg ( (3)/(4) \bigg ) + (1)/(2) (1) + (1)/(2). (3)/(4) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c7luevj21b1n1ce5sz647m1xvaw90d2g8q.png)
So, OPTION B is incorrect.
OPTION C:
![$ \textbf{-4} \bigg( - 5 \frac{\textbf{1}}{\textbf{3}} \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m3uvmp8rvayh79xstybx9k0yr9bwtole84.png)
![$ = - 4 \bigg ( -5 - (1)/(3) \bigg) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sbrotuufm9zel0dqb694wh10z11azw23nn.png)
![$ = -4(-5) + (-4) \bigg (- (1)/(3) \bigg ) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1khfw1wzoi25a6rj5m3c3r1odeygtung6f.png)
Hence, OPTION C is correct.
Similar method will help us know that OPTION D has used the Distributive property incorrectly and OPTION E has.
So, the answers are:
OPTION A
OPTION C
OPTION E