99.6k views
2 votes
It is known that x1 and x2 are roots of the equation
6x^(2) +7x+k=0

, where
2x_(1) +3x_(2) =-4. Find k.

User Tinazmu
by
3.9k points

1 Answer

3 votes

Answer:


k=-5

Explanation:

we know that

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b\pm\sqrt{b^(2)-4ac}} {2a}

in this problem we have


6x^(2) +7x+k=0

so


a=6\\b=7\\c=k

substitute in the formula


x=\frac{-7\pm\sqrt{7^(2)-4(6)(k)}} {2(6)}\\\\x=\frac{-7\pm√(49-24k)} {12}

so


x_1=\frac{-7+√(49-24k)} {12}\\\\x_2=\frac{-7-√(49-24k)} {12}

Remember that


2x_1+3x_2=-4

substitute


2(\frac{-7+√(49-24k)} {12})+3(\frac{-7-√(49-24k)} {12})=-4\\\\(\frac{-14+2√(49-24k)} {12})+(\frac{-21-3√(49-24k)} {12})=-4

Multiply by 12 both sides


(-14+2√(49-24k))+(-21-3√(49-24k))=-48\\\\-35-√(49-24k)=-48\\\\√(49-24k)=48-35\\\\√(49-24k)=13

squared both sides


49-24k=169\\24k=49-169\\24k=-120\\k=-5

therefore

The equation is


6x^(2) +7x-5=0

The roots are


x=\frac{-7\pm√(49-24(-5))} {12}\\\\x=\frac{-7\pm√(169)} {12}\\\\x=\frac{-7\pm13} {12}\\\\x_1=\frac{-7+13} {12}=\frac{1} {2}\\\\x_2=\frac{-7-13} {12}=-\frac{5} {3}

User Quantity
by
3.2k points