Answer:
0.70 s
Step-by-step explanation:
Potential energy = kinetic energy + rotational energy
mgh = ½ mv² + ½ Iω²
For a thin spherical shell, I = ⅔ mr².
mgh = ½ mv² + ½ (⅔ mr²) ω²
mgh = ½ mv² + ⅓ mr²ω²
For rolling without slipping, v = ωr.
mgh = ½ mv² + ⅓ mv²
mgh = ⅚ mv²
gh = ⅚ v²
v = √(1.2gh)
v = √(1.2 × 9.81 m/s² × 1.1 m sin 49.0°)
v = 3.13 m/s
The acceleration down the incline is constant, so given:
Δx = 1.1 m
v₀ = 0 m/s
v = 3.13 m/s
Find: t
Δx = ½ (v + v₀) t
t = 2Δx / (v + v₀)
t = 2 (1.1 m) / (3.13 m/s + 0 m/s)
t = 0.704 s
Rounding to two significant figures, it takes 0.70 seconds.