231k views
4 votes
The sides of a triangle are 56 CM, 60 cm and 52 cm find its area using herons formula ​

2 Answers

4 votes

Answer:

1344cm^2

Explanation:

Semi perimeter:

S = (a+b+c)/2

S=(56+60+52)/2

S=168/2

S=84

Area:

A=root S(S-56)(S-60)(S-52)

A=root 84(84-56)(84-60)(84-52)

A=root 84(28*24*32)

A=root 84(21504)

A=root1806336

A=1344cm^2

User TerrorAustralis
by
4.7k points
1 vote

Answer:

Explanation:


s=(a+b+c)/(2)=(56+60+52)/(2)=(168)/(2)=84 cm\\\\s-a=84-56=28 cm\\s-b=84-60=24 cm\\\\s-c=84-52=32 cm\\\\Area=√(s*(s-a)(s-b)(s-c)) \\\\=√(84*28*24*32)=√(7*12*7*4*12*2*4*2*2*2)\\\\=7*12*4*2*2=1344 sq.cm

User Vespino
by
5.4k points