Answer: d = 1.54m
The depth of the lake is 1.54m
Step-by-step explanation:
The final velocity of the ball just before it hit the water can be derived using the equation below;
v^2 = u^2 + 2as ......1
Where ;
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance travelled.
Since the initial velocity is zero, and the acceleration is due to gravity, the equation becomes:
v^2 = 2gs
v = √2gs ......2
g = 9.8m/s^2
s = 6.10mm = 0.0061m
substituting into equation 2
v = √(2 × 9.8× 0.0061)
v = 0.346m/s
The time taken for the ball to hit water from the time of release can be given as:
d = ut + 0.5gt^2
Since u = 0
d = 0.5gt^2
Making t the subject of formula.
t = √(2d/g)
t = √( 2×0.0061/9.8)
t = 0.035s
The time taken for the ball to reach the bottom of the lake from the when it hits water is:
t2 = 4.5s - 0.035s = 4.465s
And since the ball falls for 4.465s to the bottom of the lake at the same velocity as v = 0.346m/s. The depth of the lake can be calculated as;
depth d = velocity × time = 0.346m/s × 4.465s
d = 1.54m
The depth of the lake is 1.54m