Step-by-step explanation:
According to the energy conservation,
![F_(centripetal) = F_(electric)](https://img.qammunity.org/2021/formulas/physics/college/q7l1wbqmtlo736n56ea1cgzsukp6fluo4y.png)
![(mv^(2))/(r) = (kq^(2))/(d^(2))](https://img.qammunity.org/2021/formulas/physics/college/r5glilsaen3q6rjtwp6redhvndx0fpk2ip.png)
![v^(2) = (kq^(2)r)/(d^(2)m)](https://img.qammunity.org/2021/formulas/physics/college/xdni9hnxatmpzq69kd996kxgbajllhbd8j.png)
=
![(9 * 10^(9) N.m^(2)/C^(2) * 1.6 * 10^(-19) C * 0.75 * 10^(-9) m)/((1.50 * 10^(-9)m)^(2) * 9.11 * 10^(-31) kg)](https://img.qammunity.org/2021/formulas/physics/college/27m30bfvuhqa5t4mt6rgowre2jp1bgwi2q.png)
=
![8.430 * 10^(10) m^(2)/s^(2)](https://img.qammunity.org/2021/formulas/physics/college/w685mcbj7bc06fu4zh2ct9knn44sn43mv2.png)
v =
![\sqrt{8.430 * 10^(10) m^(2)/s^(2)}](https://img.qammunity.org/2021/formulas/physics/college/ctbm04vdzyz26i2s8jfeit0urqwkyns0lv.png)
=
![2.903 * 10^(5) m/s](https://img.qammunity.org/2021/formulas/physics/college/gzs7gplus8x4tqc9xg3qk6xd3orwmhxuar.png)
Formula for distance from the orbit is as follows.
S =
![2 \pi r](https://img.qammunity.org/2021/formulas/mathematics/high-school/a0fcqe3rtm7qnla1r7tzq19js64zx5paya.png)
=
![2 * 3.14 * 0.75 * 10^(-9) m](https://img.qammunity.org/2021/formulas/physics/college/rpwzinv5f2bsx9gwv0ug21lb7xne6eftjd.png)
=
![4.71 * 10^(-9) m](https://img.qammunity.org/2021/formulas/physics/college/e29npm96ml1uhrkaft2y2b1k1hpmtaccjx.png)
Now, relation between time and distance is as follows.
T =
![(S)/(v)](https://img.qammunity.org/2021/formulas/physics/college/itcerdtv04gkca6lbz0c25cn1xe2idhi16.png)
![(1)/(f) = (S)/(v)](https://img.qammunity.org/2021/formulas/physics/college/9r644sycc7um0pp6l5hbpuact3mxy7059e.png)
or, f =
=
=
![6.164 * 10^(13) Hz](https://img.qammunity.org/2021/formulas/physics/college/di5w2tjj8z7lb59f77zrn1guziykfobgiz.png)
Thus, we can conclude that the orbital frequency for an electron and a positron that is 1.50 apart is
.