14.3k views
1 vote
A positron is an elementary particle identical to an electron except that its charge is . An electron and a positron can rotate about their center of mass as if they were a dumbbell connected by a massless rod.What is the orbital frequency for an electron and a positron 1.50 apart?

1 Answer

3 votes

Step-by-step explanation:

According to the energy conservation,


F_(centripetal) = F_(electric)


(mv^(2))/(r) = (kq^(2))/(d^(2))


v^(2) = (kq^(2)r)/(d^(2)m)

=
(9 * 10^(9) N.m^(2)/C^(2) * 1.6 * 10^(-19) C * 0.75 * 10^(-9) m)/((1.50 * 10^(-9)m)^(2) * 9.11 * 10^(-31) kg)

=
8.430 * 10^(10) m^(2)/s^(2)

v =
\sqrt{8.430 * 10^(10) m^(2)/s^(2)}

=
2.903 * 10^(5) m/s

Formula for distance from the orbit is as follows.

S =
2 \pi r

=
2 * 3.14 * 0.75 * 10^(-9) m

=
4.71 * 10^(-9) m

Now, relation between time and distance is as follows.

T =
(S)/(v)


(1)/(f) = (S)/(v)

or, f =
(v)/(S)

=
(2.903 * 10^(5) m/s)/(4.71 * 10^(-9) m)

=
6.164 * 10^(13) Hz

Thus, we can conclude that the orbital frequency for an electron and a positron that is 1.50 apart is
6.164 * 10^(13) Hz.

User Sam Joseph
by
5.8k points