Answer:
q=0.06 C
Step-by-step explanation:
Given that
Net flux
![\phi = 6.78* 10^(9)\ Nm^2/C](https://img.qammunity.org/2021/formulas/physics/college/ghk4f2v9j6zk7nta02fmwlxch42gxbrzcj.png)
Lets take charge inside Gaussian surface = q C
We know that
![\phi=(q)/(\varepsilon _o)](https://img.qammunity.org/2021/formulas/physics/college/r77pprrf6ddpympmqycf2aaolqvtdxlvbb.png)
![\varepsilon _o=8.854* 10^(-12) farads\ per\ meter](https://img.qammunity.org/2021/formulas/physics/college/o2nmi33yv4x448fjhgib5yuhmtvhxg8vlp.png)
Now by putting the values in the above equation we get
![6.78* 10^(9)=(q)/(8.854* 10^(-12))](https://img.qammunity.org/2021/formulas/physics/college/xoq8zlriuu1p8e79sqhpgd5i918rf1ejm8.png)
![q=6.78* 10^(9)* 8.854* 10^(-12)\ C](https://img.qammunity.org/2021/formulas/physics/college/wqgqd0511jqa3exdgih0psow0kukehc47j.png)
q=0.06 C
Therefore the net charge inside the surface will be 0.06 C.
q=0.06 C