Answer:
1.55 m
Step-by-step explanation:
Momentum: This can be defined as the product of mass of a body and it velocity. the S.I unit of momentum is kgm/s.
Mathematically,
Momentum can be represented as,
M = mv................................. Equation 1
Where m = mass of the body, v = velocity of the body, M = momentum.
Making v the subject of the equation,
v = M/m........................................... Equation 2
Given: M = 0.80 kg.m/s, m = 0.145 kg.
Substituting into equation 2,
v = 0.8/0.145
v = 5.52 m/s.
Using the equation of motion,
v² = u² + 2gs ....................... Equation 3.
Where v = final velocity of the rubber ball, u = initial velocity of the rubber ball, s = distance, g = acceleration due to gravity.
Given: v = 5.52 m/s, u = 0 m/s, g = 9.81 m/s².
Substituting into equation 2
5.52² = 0² + 2(9.81)s
30.47 = 19.62s
s = 30.47/19.62
s = 1.55 m.
Thus the ball was dropped from a height of 1.55 m