121k views
2 votes
Find a unit vector orthogonal to the plane containing the points A= 1,0,0 , B= 3,−1,−3 , and C= 1,3,−2 .

1 Answer

2 votes

Answer:

unit normal vector n will be n=(a,b,c) = (4/√171,11/√171,6/√171)

Explanation:

There are several ways to solve this problem

1) build 2 vectors AB and BC such that the vectorial product ABxBC is the orthogonal vector to the plane , then find unit vector

2) since the 3 points belongs to the plane solve a linear system of 4 equation with 4 variables

for the second solution , the equation of the plane with normal vector n=(a,b,c) and containing the point (x₀,y₀,z₀) is

a*(x-x₀)+b*(y-y₀)+c*(z-z₀) =0

and

a²+b²+c² = 1 (unit vector)

then choosing A=(x₀,y₀,z₀)=(1,0,0)

a*(x-1)+b*(y-0)+c*(z-0) =0

for B

a*(3-1)+b*(-1-0)+c*(-3-0) =0

1) 2*a - b - 3*c =0

for C

a*(1-1)+b*(3-0)+c*(-2-0) =0

2) 3*b - 2*c=0 → b= 2/3*c

replacing in 1)

2*a - 2/3*c - 3*c =0

2*a-11/3*c=0 → a=11/6*c

thus

a²+b²+c² = 1

(11/6*c)²+(2/3*c)²+c² = 1

(121/36+4/9+1)*c² = 1

171/36*c²=1 → c= 6/√171

therefore

a=11/6*c = 11/6*6/√171= 11/√171

b=2/3*c= 2/3*6/√171= 4/√171

then the unit normal vector n will be

n=(a,b,c) = (4/√171,11/√171,6/√171)

User Allen Edwards
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories