Answer:
The dimension of the rug would be 17 ft × 9 ft.
Explanation:
Given
length of the room = 27 ft.
width of the room = 19 ft.
suppose, she leaves a uniform strip of x ft. around the rug.
So,
The length of rug = (27-2x)ft.
Width of rug= (19-2x)ft.
∴ Area of the rug= length×width
![= (27-2x)(19-2x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bxxja6u3tjvz27h6srskytldfmw9xp5i61.png)
![= 513-54x-38x+4x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/kwpl3qng92znat5x8kbemvh7t54vk6p04r.png)
![= 513-92x+4x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/oxna6b0jpa9u5vg5xcw96bbuwpkprmwy2x.png)
According to the question,
![513-92x+4x^2=153](https://img.qammunity.org/2021/formulas/mathematics/high-school/w22hab9fh48sr04wg8idf1pwr9yyj32xzo.png)
( subtract 153 both sides)
![4x^2-92x+360=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/4i04n9ba2mw4n7y1a3wd76v271rbqrvtvg.png)
![4(x^2-23x+90)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/2rwj5c8dn0oxlv753bmdmlzina8xktjn96.png)
![x^2-23x+90=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/4tiboma5ssw7t2t2o0iq7bjh4e63pux3go.png)
( Middle term splitting)
![x^2-18x-5x+90=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/he8crak8k3twf05iwyb7fle32btt10xy42.png)
![x(x-18)-5(x-18)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/qw5bktx11egu1kb4iwtogjl4fjgw8zkepf.png)
![(x-5)(x-18)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/m8hoggm0s3b4z7aafq7pbzgjiz6qet3h8r.png)
or
( zero product property)
or
![x=18](https://img.qammunity.org/2021/formulas/mathematics/high-school/n2sz6qdf1mu2rolhdsvgrhnwbfuvcxr82h.png)
if x=18, dimension would be negative ( Not possible)
Thus, x= 5
Hence,
length of rug= 27-10=17 ft.
width of rug= 19-10=9 ft.