Answer:
B (z) = 2,467 10⁻¹¹ cos (1,486 10⁸ x - 5.571 10¹⁵ t )
Step-by-step explanation:
An electromagnetic wave is a wave that is sustained in the perpendicular fluctuations of the electric and magnetic fields, the equation of the wave is
E (y) = Eo cos (kx –wt)
B (z) = Bo cos (kx-wt)
Let's look for the terms to build these equations. The speed of the wave is given by
c = λ f
The frequency and period are related
f = 1 / T
Let's start by applying this equation our case
f = c /λ
f = 3 10⁸/225 10⁻⁹
f = 1.33 10¹⁵ Hz
The angular velocity and the wave number are
w = 2π f
k = 2π /λ
w = 2π 1.33 10¹⁵ = 8.38 10¹⁵ rad / s
k = 2π / 225 10⁻⁹ = 2.79 10⁷ m⁻¹
It indicates that the period increases by a factor of 1.5, let's look for the new frequency
T = 1.5 T₀
f = 1 / T
f = 1 / 1.5T₀
f = 1 / 1.5 f₀
f = 1 / 1.5 1.33 10¹⁵ = 8.87 10¹⁴ Hz
c = λ f
λ = c / f
λ = 3 10⁸ / 8.87 10¹⁴ = 4,229 10⁻⁸ m
Let's find the new w and k
w = 2π f
w = 2π 8.87 10¹⁴ = 5.571 10¹⁵ rad/s
k = 2π / λ
k = 2π / 4,229 10⁻⁸ = 1,486 10⁸ cm⁻¹
We use the relationship that the fields are in phase
c = E₀ / B₀
B₀ = E₀ / c
B₀ = 7.4 10⁻³ / 3 10 ⁸ = 2.467 10⁻¹¹ T
With these values we can build the equation of the magnetic field
B (z) = 2,467 10⁻¹¹ cos (1,486 10⁸ x - 5.571 10¹⁵ t )