164k views
0 votes
In finding the areas under the normal curve, if we wish to determine the area between A and B, and both A and B are greater than the mean (with A further away from the mean than B)

a)We find the area between the mean and A and subtract the area between the mean and B

b)We find the area between the mean and A and add the area between the mean and B

c)We find the area between the mean and A and subtract it from .50

d)We find the area between the mean and A and add it to .50

User Zrslv
by
8.1k points

1 Answer

3 votes

Answer:

a.

Explanation:

A and B both are greater than mean and so A and B lies on the right side of mean. Further it is stated that A is more away from the mean than B. It means that A is greater than B. So, in order to find the area between A and B we have to subtract the area of mean to B from area of mean to A. It can be explain in the notations as

P(B<X<A)=P((B-μ)/σ<z<(A-μ)/σ)

P(B<X<A)=P(z<(A-μ)/σ)-P(z<(B-μ)/σ)

Hence, we find the area from mean to A and subtract the area from mean to B.

User Dana Robinson
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.