The solution is
and
![(7,-3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y7as33xpifpmg2js0xmyptx3zynywjvfot.png)
Explanation:
The expression is
and
![x+y=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m1czz85atewrxdvy5qofbbdaeob9ra6ek7.png)
Using substitution method we can solve the expression.
Let us substitute
in
![x^(2) +y^(2) -x+3y-42=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9216moi0ztkeircomhhvgrmbnnpimw21l8.png)
![(4-y)^(2) +y^(2) -(4-y)+3y-42=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zrv3tseusqwqc33nmhmuj6rjyj6u9v1gr2.png)
Expanding and simplifying the expression, we get,
![\begin{array}{r}{16-8 y+y^(2)+y^(2)-4+y+3 y-42=0} \\{2 y^(2)-4 y-30=0}\end{array}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iidm8ty7zcwnrt6cvgi8xi9cs9nf0tz1n7.png)
Let us use the quadratic equation formula to solve this equation,
![\begin{aligned}y &=(4 \pm √(16-4(2)(-30)))/(2(2)) \\&=(4 \pm √(16+240))/(4) \\&=(4 \pm 16)/(4) \\y &=1 \pm 4\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j7h93z846e3en2yhgr9ihnsfgjohql0mku.png)
Thus,
and
![y=-3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/edak6724nmmnqcocpiupv6yx6fvddk5cbl.png)
Substituting y-values in the equation
, we get the value of x.
For
⇒
![x=4-5=-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qqsv9ta3zy10id71s1ke6yezquqth5va5y.png)
For
⇒
![x=4+3=7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/deyn8uewy2wtxpaewb8nyw1m8eljwbmw4a.png)
Thus, the solution set is
and
![(7,-3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y7as33xpifpmg2js0xmyptx3zynywjvfot.png)