Answer:
Therefore,
![cos A=(2√(5))/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z7fw3u4sf28w0m0ne5g305xargw9co2k36.png)
![\cot B =(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4b8lb16d7szdvh9iivaa8hinmkjewcdj9h.png)
![\csc B = (√(5))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4qrcck2kpwob6cwjowtjvhu4fanz0kd83q.png)
Explanation:
Given:
Right △ABC has its right angle at C,
BC=4 , and AC=8 .
To Find:
Cos A = ?
Cot B = ?
Csc B = ?
Solution:
Right △ABC has its right angle at C, Then by Pythagoras theorem we have
![(\textrm{Hypotenuse})^(2) = (\textrm{Shorter leg})^(2)+(\textrm{Longer leg})^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8aymum5euf0cartkdkt7ky9dclwpv3oy1.png)
Substituting the values we get
![(AB)^(2)=4^(2)+8^(2)=80\\AB=√(80)\\AB=4√(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/huv6c9l6x7swnf5gxkw118rcbiiqtwvn7c.png)
Now by Cosine identity
![\cos A = \frac{\textrm{side adjacent to angle A}}{Hypotenuse}\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6xxitz6sd9j3vx2c156b7iyopludm1wuyp.png)
Substituting the values we get
![\cos A = (AC)/(AB)=(8)/(4√(5))=(2)/(√(5))\\\\Ratinalizing\\\cos A=(2√(5))/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ykwl6r3qzujevj0wyouzphy0ajcc7kt139.png)
![cos A=(2√(5))/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z7fw3u4sf28w0m0ne5g305xargw9co2k36.png)
Now by Cot identity
![\cot B = \frac{\textrm{side adjacent to angle B}}{\textrm{side opposite to angle B}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ikvwtjz2yhd1c0mf88hfod757pgylrz7uy.png)
Substituting the values we get
![\cot B = (BC)/(AC)=(4)/(8)=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hbew8ec9882njrv9v7fkd9lx90nfjmy9me.png)
Now by Cosec identity
![\csc B = \frac{Hypotenuse}{\textrm{side opposite to angle B}}\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/f5n0mqxtks2htn25db5qmgp389gs0c8j9o.png)
Substituting the values we get
![\csc B = (AB)/(AC)=(4√(5))/(8)=(√(5))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cifefs1xypzyi484ze943li7wenq1kfhy9.png)
Therefore,
![cos A=(2√(5))/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z7fw3u4sf28w0m0ne5g305xargw9co2k36.png)
![\cot B =(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4b8lb16d7szdvh9iivaa8hinmkjewcdj9h.png)
![\csc B = (√(5))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4qrcck2kpwob6cwjowtjvhu4fanz0kd83q.png)