Answer:
a.
i. 0 cm/s
ii. 49183 cm/s
iii. 4188.75 cm/s
iv. -673.8 cm/s
b. Instantaneous velocity is -900 cm/s
Step-by-step explanation:
Upon differentiating s = 5 sin πt + 2 cos πt....................Eqn 1
derivative of sin πt is π cos πt
derivative of cos πt is -π sin πt
Therefore derivative of s = 5 sin πt + 2 cos πt is
5π cos πt - 2π sin πt.................Eqn 2
Substituting [1, 2] cm/s into Eqn 2
At t = 1 sec ; 5(180) cos 180 - 2(180) sin 180 = -900 cm/s
At t = 2 sec 5(180) cos 360 - 2(180) sin 360 = 900 cm/s
Average velocity = [900 + (-900)] ÷ 2 = 0
Substituting [1, 1.1] cm/s into Eqn 2
At t = 1 sec ; 5(180) cos 180 - 2(180) sin 180 = -900 cm/s
At t = 1.1 sec 5(180) cos 198 - 2(180) sin 198 = 99,266 cm/s
Average velocity = [99,266cm/s + (-900)] ÷ 2 = 49183 cm/s
Substituting [1, 1.01] cm/s into Eqn 2
At t = 1 sec ; 5(180) cos 180 - 2(180) sin 180 = -900 cm/s
At t = 1.1 sec 5(180) cos 181.8 - 2(180) sin 181.8 = 9277.5 cm/s
Average velocity = [9277.5 + (-900)] ÷ 2 = 4188.75 cm/s
Substituting [1, 1.001] cm/s into Eqn 2
At t = 1 sec ; 5(180) cos 180 - 2(180) sin 180 = -900 cm/s
At t = 1.1 sec 5(180) cos 180.18 - 2(180) sin 180.18 = -447.6 cm/s
Average velocity = [-447.6 + (-900)] ÷ 2 = -673.8 cm/s
b. Instantaneous velocity at t=1
Substituting t=1 into Eqn 2
At t = 1 sec ; 5(180) cos 180 - 2(180) sin 180 = -900 cm/s