71.9k views
2 votes
Assume ​Y=1​+X+u​, where X​, Y​, and ​u=v+X are random​ variables, v is independent of X​; ​E(v​)=0, ​Var(v​)=1​, ​E(X​)=1, and ​Var(X​)=2.

Calculate ​E(u ​| ​X=​1), ​E(Y ​| ​X=​1), ​E(u ​| ​X=​2), ​E(Y ​| ​X=​2), ​E(u ​| X​), ​E(Y ​| X​), ​E(u​) and ​E(Y​).

User Joshpt
by
8.1k points

1 Answer

4 votes

Answer:

a)
E(u|X=1)= E(v|X=1) + E(X|X=1) = E(v) +1 = 0 +1 =1+

b)
E(Y| X=1)= E(1|X=1) + E(X|X=1) + E(u|X=1) = E(1) + 1 + E(v) + 0 = 1+1+0=2

c)
E(u|X=2)= E(v|X=2) + E(X|X=2) = E(v) +2 = 0 +2 =2

d)
E(Y| X=2)= E(1|X=2) + E(X|X=2) + E(u|X=2) = E(2) + 2 + E(v) + 2 = 2+2+2=6

e)
E(u|X) = E(v+X |X) = E(v|X) +E(X|X) = E(v) +E(X) = 0+1=1

f)
E(Y|X) = E(1+X+u |X) = E(1|X) +E(X|X) + E(u|X) = 1+1+1=3

g)
E(u) = E(v) +E(X) = 0+1=1

h) E(Y) = E(1+X+u) = E(1) + E(X) +E(v+X) = 1+1 + E(v) +E(X) = 1+1+0+1 = 3[/tex]

Explanation:

For this case we know this:


Y = 1+X +u


u = v+X

with both Y and u random variables, we also know that:


[tex] E(v) = 0, Var(v) =1, E(X) = 1, Var(X)=2

And we want to calculate this:

Part a


E(u|X=1)= E(v+X|X=1)

Using properties for the conditional expected value we have this:


E(u|X=1)= E(v|X=1) + E(X|X=1) = E(v) +1 = 0 +1 =1

Because we assume that v and X are independent

Part b


E(Y| X=1) = E(1+X+u|X=1)

If we distribute the expected value we got:


E(Y| X=1)= E(1|X=1) + E(X|X=1) + E(u|X=1) = E(1) + 1 + E(v) + 0 = 1+1+0=2

Part c


E(u|X=2)= E(v+X|X=2)

Using properties for the conditional expected value we have this:


E(u|X=2)= E(v|X=2) + E(X|X=2) = E(v) +2 = 0 +2 =2

Because we assume that v and X are independent

Part d


E(Y| X=2) = E(1+X+u|X=2)

If we distribute the expected value we got:


E(Y| X=2)= E(1|X=2) + E(X|X=2) + E(u|X=2) = E(2) + 2 + E(v) + 2 = 2+2+2=6

Part e


E(u|X) = E(v+X |X) = E(v|X) +E(X|X) = E(v) +E(X) = 0+1=1

Part f


E(Y|X) = E(1+X+u |X) = E(1|X) +E(X|X) + E(u|X) = 1+1+1=3

Part g


E(u) = E(v) +E(X) = 0+1=1

Part h

E(Y) = E(1+X+u) = E(1) + E(X) +E(v+X) = 1+1 + E(v) +E(X) = 1+1+0+1 = 3[/tex]

User Alexey Ruzin
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories