71.9k views
2 votes
Assume ​Y=1​+X+u​, where X​, Y​, and ​u=v+X are random​ variables, v is independent of X​; ​E(v​)=0, ​Var(v​)=1​, ​E(X​)=1, and ​Var(X​)=2.

Calculate ​E(u ​| ​X=​1), ​E(Y ​| ​X=​1), ​E(u ​| ​X=​2), ​E(Y ​| ​X=​2), ​E(u ​| X​), ​E(Y ​| X​), ​E(u​) and ​E(Y​).

User Joshpt
by
2.8k points

1 Answer

4 votes

Answer:

a)
E(u|X=1)= E(v|X=1) + E(X|X=1) = E(v) +1 = 0 +1 =1+

b)
E(Y| X=1)= E(1|X=1) + E(X|X=1) + E(u|X=1) = E(1) + 1 + E(v) + 0 = 1+1+0=2

c)
E(u|X=2)= E(v|X=2) + E(X|X=2) = E(v) +2 = 0 +2 =2

d)
E(Y| X=2)= E(1|X=2) + E(X|X=2) + E(u|X=2) = E(2) + 2 + E(v) + 2 = 2+2+2=6

e)
E(u|X) = E(v+X |X) = E(v|X) +E(X|X) = E(v) +E(X) = 0+1=1

f)
E(Y|X) = E(1+X+u |X) = E(1|X) +E(X|X) + E(u|X) = 1+1+1=3

g)
E(u) = E(v) +E(X) = 0+1=1

h) E(Y) = E(1+X+u) = E(1) + E(X) +E(v+X) = 1+1 + E(v) +E(X) = 1+1+0+1 = 3[/tex]

Explanation:

For this case we know this:


Y = 1+X +u


u = v+X

with both Y and u random variables, we also know that:


[tex] E(v) = 0, Var(v) =1, E(X) = 1, Var(X)=2

And we want to calculate this:

Part a


E(u|X=1)= E(v+X|X=1)

Using properties for the conditional expected value we have this:


E(u|X=1)= E(v|X=1) + E(X|X=1) = E(v) +1 = 0 +1 =1

Because we assume that v and X are independent

Part b


E(Y| X=1) = E(1+X+u|X=1)

If we distribute the expected value we got:


E(Y| X=1)= E(1|X=1) + E(X|X=1) + E(u|X=1) = E(1) + 1 + E(v) + 0 = 1+1+0=2

Part c


E(u|X=2)= E(v+X|X=2)

Using properties for the conditional expected value we have this:


E(u|X=2)= E(v|X=2) + E(X|X=2) = E(v) +2 = 0 +2 =2

Because we assume that v and X are independent

Part d


E(Y| X=2) = E(1+X+u|X=2)

If we distribute the expected value we got:


E(Y| X=2)= E(1|X=2) + E(X|X=2) + E(u|X=2) = E(2) + 2 + E(v) + 2 = 2+2+2=6

Part e


E(u|X) = E(v+X |X) = E(v|X) +E(X|X) = E(v) +E(X) = 0+1=1

Part f


E(Y|X) = E(1+X+u |X) = E(1|X) +E(X|X) + E(u|X) = 1+1+1=3

Part g


E(u) = E(v) +E(X) = 0+1=1

Part h

E(Y) = E(1+X+u) = E(1) + E(X) +E(v+X) = 1+1 + E(v) +E(X) = 1+1+0+1 = 3[/tex]

User Alexey Ruzin
by
3.6k points