Answer:
1.686 m
Step-by-step explanation:
From coulomb's law,
F = kq1q2/r² ...................................... Equation 1
Where F = electrostatic force between the two charges, q1 = first charge, q2 = second charge, r = distance between the charges.
making r the subject of the equation,
r = √(kq1q2/F).......................... Equation 2
Given: F = 5.05 N, q1 = 28.0 μC = 28×10⁻⁶ C, q2 = 57.0 μC = 57.0×10⁻⁶ C
Constant: k = 9.0×10⁹ Nm²/C².
Substituting into equation 2
r = √(9.0×10⁹×28×10⁻⁶×57.0×10⁻⁶/5.05)
r = √(14364×10⁻³/5.05)
r = √(14.364/5.05)
r = √2.844
r = 1.686 m
r = 1.686 m.
Thus the distance must be 1.686 m