135,012 views
15 votes
15 votes

\rm \int_(0)^2 \left( \sqrt[3]{ {x}^(2) + 2x} + \sqrt{1 + {x}^3 } \right )dx \\

User Komal Rathi
by
2.5k points

1 Answer

16 votes
16 votes

If f(x) has an inverse on [a, b], then integrating by parts (take u = f(x) and dv = dx), we can show


\displaystyle \int_a^b f(x) \, dx = b f(b) - a f(a) - \int_(f(a))^(f(b)) f^(-1)(x) \, dx

Let
f(x) = √(1 + x^3). Compute the inverse:


f\left(f^(-1)(x)\right) = \sqrt{1 + f^(-1)(x)^3} = x \implies f^(-1)(x) = \sqrt[3]{x^2-1}

and we immediately notice that
f^(-1)(x+1)=\sqrt[3]{x^2+2x}.

So, we can write the given integral as


\displaystyle \int_0^2 f^(-1)(x+1) + f(x) \, dx

Splitting up terms and replacing
x \to x-1 in the first integral, we get


\displaystyle \int_1^3 f^(-1)(x) \, dx + \int_0^2 f(x) \, dx = 2 f(2) - 0 f(0) = 2*3+0*1=\boxed{6}

User Heeju
by
2.7k points