31.8k views
24 votes
Solve by completing the square

Solve by completing the square-example-1

1 Answer

12 votes


\qquad\qquad\huge\underline{{\sf Answer}}☂

Let's solve ~


\qquad \sf  \dashrightarrow \: {x}^(2) + 8x = 33


\qquad \sf  \dashrightarrow \: {x}^(2) + 8x +16 = 33 + 16


\qquad \sf  \dashrightarrow \: (x + 4) {}^(2) = 49


\qquad \sf  \dashrightarrow \: x + 4 = √(49)


\qquad \sf  \dashrightarrow \: x + 4 = \pm7

Hence, there are two solutions ~

  • 1. when x + 4 = 7


\qquad \sf  \dashrightarrow \: x + 4 = 7


\qquad \sf  \dashrightarrow \: x = 7 - 4


\qquad \sf  \dashrightarrow \: x = 3

  • 2. when x + 4 = -7


\qquad \sf  \dashrightarrow \: x + 4 = - 7


\qquad \sf  \dashrightarrow \: x = - 7 - 4


\qquad \sf  \dashrightarrow \: x = - 11

I hope you understood ~

User RocketMan
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories