Answer:
pH = 12.80
[H+] = 1.58 * 10^-13 M
Step-by-step explanation:
Step 1: Data given
Volume of 0.2M NaOH = 400 mL
Volume of 0.1M H3PO4 = 150 mL
Step 2: The balanced equation
H3PO4 + 3NaOH → Na3PO4 + 3H2O
For 1 mol H3PO4 we need 3 mol of NaOH to produce 1 mol Na3PO4 and 3 mol H2O
Step 3: Calculate moles H3PO4
Moles H3PO4 = molarity * volume
Moles H3PO4 = 0.1 M * 0.150 L
Moles H3PO4 = 0.015 moles
Step 4: Calculate moles NaOH
Moles NaOH = 0.2M * 0.400 L
Moles NaOH = 0.08 moles
For 1 mol H3PO4 we need 3 mol of NaOH to produce 1 mol Na3PO4 and 3 mol H2O
0.015 mol H3PO4 will react with 0.045 mol NaOH
Step 5: Calculate moles remaining
H3PO4 will be completely consumed
There will remain 0.08 - 0.045 = 0.035 moles of NaOH
Step 6: Calculate total volume
Total volume = 400 mL + 150 mL = 550 mL = 0.550 L
Step 7: Calculate molarity of the solution
Molarity = moles / volume
Molarity = 0.035 moles / 0.550 L
Molarity = 0.0636 M NaOH
Step 8: Calculate pOH
[OH-] = 0.0636M
pOH = -log [OH-]
pOH = -log(0.0636)
pOH= 1.20
Step 9: Calculate pH
pH = 14.00- pOH
pH = 14.00 - 1.20
pH = 12.80
[H+] = 10^-12.80
[H+] = 1.58 * 10^-13 M