Step-by-step explanation:
(a) Velocity is given by :
![v=(ds)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/4abpsozgtmv971u5jf8vqqhsptser8i4qe.png)
s is the length of the distance
t is the time
The dimension of v will be,
(b) The acceleration is given by :
![a=(dv)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/k3n5zsyw26icvb6jhimfrdjvp5xhqojazj.png)
v is the velocity
t is the time
The dimension of a will be,
![[a]=[LT^(-2)]](https://img.qammunity.org/2021/formulas/physics/college/1akn976p9evdf6nh0crhyc80zp17qg8opo.png)
(c) Since,
![d=\int\limits{v{\cdot}dt} =[LT^(-1)][T]=[L]](https://img.qammunity.org/2021/formulas/physics/college/pspk6kx5vkb6pmy5dcyemonjz5fumw90ac.png)
(d) Since,
![v=\int\limits{a{\cdot}dt} =[LT^(-2)][T]=[LT^(-1)]](https://img.qammunity.org/2021/formulas/physics/college/lein7et15jbg647ozwcjzf77d0j3sra5ln.png)
(e)
![(da)/(dt)=([LT^(-2)])/([T])](https://img.qammunity.org/2021/formulas/physics/college/npzbogtvral6xh8ghzee6wtmpraptqrwtw.png)
![(da)/(dt)=[LT^(-3)]}](https://img.qammunity.org/2021/formulas/physics/college/ob3tcvpcv1lca5zrls33yt8ehj7dsb6wv8.png)
Hence, this is the required solution.