216k views
2 votes
What is the sum of the series? 4 ∑k=1 (2k^2−4)

User Debayan
by
5.4k points

2 Answers

4 votes

Hes right its 44

444444444444444444444

User Nassim MOUALEK
by
4.1k points
2 votes

The sum of the series
\sum_(k=1)^(4)\left(2 k^(2)-4\right) is 44.

Explanation:

The given series is
\sum_(k=1)^(4)\left(2 k^(2)-4\right)=44

To find the sum of the series, we need to substitute the values for k in the series.


\sum_(k=1)^(4)\left(2 k^(2)-4\right)=\left[2(1)^(2)-4\right]+\left[2(2)^(2)-4\right]+\left[2(3)^(2)-4\right]+\left[2(4)^(2)-4\right]

Now, simplifying the square terms, we get,


[2(1)-4]+[2(4)-4]+[2(9)-4]+[2(16)-4]

Multiplying the terms,


[2-4]+[8-4]+[18-4]+[32-4]

Subtracting the values within the bracket term, we get,


-2+4+14+28

Now, adding all the terms, we get the sum of the series,


\sum_(k=1)^(4)\left(2 k^(2)-4\right)=44

Thus, the sum of the series is
\sum_(k=1)^(4)\left(2 k^(2)-4\right)=44

User Gu Mingfeng
by
4.0k points