Answer:
is the initial velocity of tossing the apple.
the apple should be tossed after
![\Delta t=0.0173\ s](https://img.qammunity.org/2021/formulas/physics/college/ow7wlngklsvflfrw3bqlsco6gopuy5v6yb.png)
Step-by-step explanation:
Given:
- velocity of arrow in projectile,
![v=30\ m.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/ifeyqubdy1qu2qikda4a9vn2772733twh4.png)
- angle of projectile from the horizontal,
![\theta=20^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/w37fxrmsuvt6xvy49lftkajlwoprtk5xoe.png)
- distance of the point of tossing up of an apple,
![d=30\ m](https://img.qammunity.org/2021/formulas/physics/college/4vtnrznv7na63w1z4tquzz814qvl366ebq.png)
Now the horizontal component of velocity:
![v_x=v\ cos\ \theta](https://img.qammunity.org/2021/formulas/physics/college/3jdkbq60uiys56dmduuv98fy5kn8xnuknt.png)
![v_x=30* cos\ 20^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/m9mzoc7hi3f1uzjbmknqvtzetpiqas6nuc.png)
![v_x=28.191\ m.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/sqju1v96qfhk16w1rrc84c7hheit12fzkm.png)
The vertical component of the velocity:
![v_y=v.sin\ \theta](https://img.qammunity.org/2021/formulas/physics/college/f4fwatufm2c1gxbytefyxmges1gvzx9wxu.png)
![v_y=30* sin\ 20^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/rziwk22ywd8nln17851bzlvofr8mlcicly.png)
![v_y=10.261\ m.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/bithuvrl8bdnlqu4v3pyt5m01bwfjbrztx.png)
Time taken by the projectile to travel the distance of 30 m:
![t=(d)/(v_x)](https://img.qammunity.org/2021/formulas/physics/college/gxjaqtknzg7s4goh9i3jlncv24aweippcq.png)
![t=(30)/(28.191)](https://img.qammunity.org/2021/formulas/physics/college/3ni3o8916gz10f9ah5j4dubvvowcdid9rd.png)
![t=1.0642\ s](https://img.qammunity.org/2021/formulas/physics/college/f5z5iyvas22zcjczikelkwcqwms0ix0son.png)
Vertical position of the projectile at this time:
![h=v_y.t-(1)/(2)g.t^2](https://img.qammunity.org/2021/formulas/physics/college/3bmflcz33d9ha8aws37xmjarn3nco965qf.png)
![h=10.261* 1.0642-(1)/(2) * 9.8* 1.0642^2](https://img.qammunity.org/2021/formulas/physics/college/z8f3fy43mfctfq7128j4bl89r5hyjttohm.png)
![h=5.3701\ m](https://img.qammunity.org/2021/formulas/physics/college/dg6wgr8uxu9j9sjmssd7ebsxk7bwc6hjdu.png)
Now this height should be the maximum height of the tossed apple where its velocity becomes zero.
![v'^2=u'^2-2g.h](https://img.qammunity.org/2021/formulas/physics/college/hf7ap6u8sktiklzi71tzqk72ociiyh653e.png)
![0^2=u'^2-2* 9.8* 5.3701](https://img.qammunity.org/2021/formulas/physics/college/uqvzbsyzw1l7lkqtn7kvxplvl8bigjpyte.png)
is the initial velocity of tossing the apple.
Time taken to reach this height:
![v'=u'-g.t'](https://img.qammunity.org/2021/formulas/physics/college/nzdj04w5h8a4lx2bjmxlhn1xrdzcufv7w6.png)
![0=10.259-9.8* t'](https://img.qammunity.org/2021/formulas/physics/college/438sle8qlqcbpkmw5hlstblmo6occ7fojr.png)
![t'=1.0469\ s](https://img.qammunity.org/2021/formulas/physics/college/zj769e8przgpdzgxawftjqjkamenc7audo.png)
We observe that
hence the time after the launch of the projectile after which the apple should be tossed is:
![\Delta t=t-t'](https://img.qammunity.org/2021/formulas/physics/college/rytnu2cnp1m1kilidduwhikb4mdg8un0ve.png)
![\Delta t=1.0642-1.0469](https://img.qammunity.org/2021/formulas/physics/college/8daxp8omdyk1qd7cffxbes6mvms3vtc3s3.png)
![\Delta t=0.0173\ s](https://img.qammunity.org/2021/formulas/physics/college/ow7wlngklsvflfrw3bqlsco6gopuy5v6yb.png)