Answer:
![t = (ln((21)/(59)))/(-0.15)=6.887 hr](https://img.qammunity.org/2021/formulas/mathematics/college/k35x0q7kt1lr85gjahl61x1yr3q5crhc2c.png)
So it would takes approximately 6.9 hours to reach 32 F.
Step-by-step explanation:
For this case we have the following differential equationÑ
![(du)/(dt)= -k (u-T)](https://img.qammunity.org/2021/formulas/mathematics/college/lx0wch520stvifnues441v464ew9r2hk5x.png)
We can reorder the expression like this:
![(du)/(u-T) = -k dt](https://img.qammunity.org/2021/formulas/mathematics/college/zackk5mnzmxzsmsygp7eiciz5t8d7y9j8b.png)
We can use the substitution
and
so then we have:
![(dw)/(w) =-k dt](https://img.qammunity.org/2021/formulas/mathematics/college/o2n8zfh0knsk78t5lxsgz12jy2dy9me44v.png)
IF we integrate both sides we got:
![ln |w| = -kt +C](https://img.qammunity.org/2021/formulas/mathematics/college/clrzkkibs3dztwdu3xub93cf0zzxzeep9j.png)
If we apply exponential in both sides we got:
![w = e^(-kt) *e^c](https://img.qammunity.org/2021/formulas/mathematics/college/oij9sk0b0f0yvy6hk4nycy16be2n6biyil.png)
And if we replace w = u-T we got:
![u(t)= T + C_1 e^(-kt)](https://img.qammunity.org/2021/formulas/mathematics/college/xwqauavg2k7kxhaweqmqokelstg3a6081c.png)
We can also express the solution in the following terms:
![u(t) = (T_i -T_(amb)) e^(kt) +T_(amb)](https://img.qammunity.org/2021/formulas/mathematics/college/rdhuyt6txk8pel01u2pc5wlhxuiw7oildu.png)
For this case we know that
since w ehave a cooloing,
, we have this model:
And if we want that the temperature would be 32F we can solve for t like this:
![32 = 59 e^(-0.15 t) +11](https://img.qammunity.org/2021/formulas/mathematics/college/19y23a3l342pc8b8k1q2s44u5ajpzw4awm.png)
![21=59 e^(-0.15 t)](https://img.qammunity.org/2021/formulas/mathematics/college/kff45gks0bo2mx12689kqcafmjywxnmt5d.png)
![(21)/(59) = e^(-0.15 t)](https://img.qammunity.org/2021/formulas/mathematics/college/7x02cwpy5q2t4rl56h9ywlrt9ibneqkxlz.png)
If we apply natural logs on both sides we got:
![ln ((21)/(59)) =-0.15 t](https://img.qammunity.org/2021/formulas/mathematics/college/qg77ld1jxh27asogx5fc3zq5dxyxug5rey.png)
![t = (ln((21)/(59)))/(-0.15)=6.887 hr](https://img.qammunity.org/2021/formulas/mathematics/college/k35x0q7kt1lr85gjahl61x1yr3q5crhc2c.png)
So it would takes approximately 6.9 hours to reach 32 F.