Answer:
62.64 RPM.
Step-by-step explanation:
Given that
m= 4.6 g
r= 19 cm
μs = 0.820
μk = 0.440.
The angular speed of the turntable = ω rad/s
Condition just before the slipping starts
The maximum value of the static friction force =Centripetal force
![\mu_s\ m g=m\ \omega^2\ r\\ \omega^2=(\mu_s\ m g)/(m r)\\ \omega=\sqrt{(\mu_s\ g)/( r)}\\ \omega=\sqrt{(0.82* 10)/( 0.19)}\ rad/s\\\omega= 6.56\ rad/s](https://img.qammunity.org/2021/formulas/physics/college/3klexkw9q92fnizbwkfnwr0sokm9j3jce3.png)
![\omega=(2\pi N)/(60)\\N=(60* \omega)/(2\pi )\\N=(60* 6.56)/(2\pi )\ RPM\\N=62.64\ RPM](https://img.qammunity.org/2021/formulas/physics/college/o9nm93bujyumbxhtmrqjelx5zjulaw4lsk.png)
Therefore the speed in RPM will be 62.64 RPM.