Answer:
E.) 1
Explanation:
Firstly we will solve for L.H.S.
L.H.S. =
![Csc^2\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/trrmntn13v1qu62kk4iyekm79qcpzji5x4.png)
Since we know that
is the inverse of
.
So we can say that;
![csc^2\theta=(1)/(sin^2\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2nd1z9onxokxiq0en99oyljrtxlzq5hvro.png)
Now For R.H.S.
![Cot^2\theta+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/jqnkp7c8w4hrtpqeh7bsbrwy10q2e5wstl.png)
Since we can rewrite
as
.
Now we can say that the R.H.S. is;
![(cos^2\theta)/(sin^2\theta)+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/rdizhsrdf72v2mtarzjshwxcppsgu8bvcx.png)
Now we add the fraction and get;
![(cos^2\theta+sin^2\theta)/(sin^2\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/34a5ihkgu6c38oruyd6200xuzsam53x0ay.png)
Now according to trigonometric identity;
![cos^2\theta+sin^2\theta=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/qqecdjquetysekdfhq7ybjzqs1lfst8anw.png)
So,
![(cos^2\theta+sin^2\theta)/(sin^2\theta)=(1)/(sin^2\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rb91qhxtlpqu97jfr4vdu118q3b3zcqpwu.png)
Here,
and
=
L.H.S. = R.H.S.
Hence
![csc^2\theta=cot^2\theta+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/28ebr40qhlqdqzxm72niqj2dzisvml2nkz.png)