Answer:
a. dipole moment = 2.003 × 10⁻¹³ Cm, charge = 2.003 × 10⁻¹¹ C b. 8.96 N/C
Step-by-step explanation:
a. The electric field due to a dipole is given by
E = p/2πεy³ where p = dipole moment and y = distance of dipole to point of electric field = 10 cm = 0.10 m. E = electric field strength at (0,10) = 360 N/C
So, E = p/2πεy³
p = 2πεy³E = 2π × 8.854 × 10⁻¹² × (0.10 m)³ × 360 N/C = 2.003 × 10⁻¹³ Cm
Also, p = qd where q = charge and d = distance of charges apart = 1.0 cm = 0.01 m
q = p/d = 2.003 × 10⁻¹³ Cm/0.01 m = 2.003 × 10⁻¹¹ C
b. The electric field at point (10,0)
E = qx/[πε√(d² + 4x²)]³ which is the electric field at an axis perpendicular to the dipole where x = 10 cm = 0.10 m
E = 2.003 × 10⁻¹¹ C × 0.10/π × 8.854 × 10⁻¹²√(0.01² + 4×(0.1)²)³ = 8.96 N/C.