Answer:
Θ = (π/6) + πn
Θ = (5π/6) + πn
Explanation:
4sin²Θ + 4 = 5
-4 -4
4sin²Θ = 1
÷4 ÷4
sin²Θ = (1/4)
√sin²Θ = √(1/4)
sinΘ = (1/2), (-1/2)
-------------------------
Θ = arcsin (1/2)
Θ = (π/6)
to find the quadrant subtract π
Θ = π - (π/6)
Θ = (5π/6)
Find the period
2π / |b|
b = 1
2π/1 = 2π
The sin Θ function is 2π, so values will repeat 2π in both directions.
Θ = (π/6) + 2πn (n is the variable)
Θ = (5π/6) + 2πn
-------------------------------------------------------------------------------------------------------
sin Θ = (-1/2)
Θ = arcsin (-1/2)
Θ = (-π/6)
To find the second function add π
Θ = 2π + (π/6) + π
Θ = (7π/6)
Find the period
2π/|b|
2π/1
2π
(-π/6) + 2π
2π 6 π
----- × ----- - -----
1 6 6
Θ = (11π/6) will repeat every 2π in both directions
-------------------------------------------------------------------------------------------------------
Θ = (π/6) + 2πn
Θ = (5π/6) + 2πn
Θ = (7π/6) + 2πn
Θ = (11π/6) + 2πn
(π/6) + π = (7π/6)
(5π/6) + π = (11π/6)
Θ = (π/6) + πn
Θ = (5π/6) + πn
----------------------------------------------------------------------------------------------------------
I hope this helps!