Final answer:
The intermolecular forces between a hydrogen iodide molecule and a dichloroethylene molecule involve both dispersion forces and dipole-dipole forces.
Step-by-step explanation:
The intermolecular forces between a hydrogen iodide molecule (HI) and a dichloroethylene molecule (C2H2Cl2) involve both dispersion forces and dipole-dipole forces.
- Dispersion Forces: Iodine (I) in HI is a larger atom compared to chlorine (Cl) in dichloroethylene. As a result, HI has stronger dispersion forces due to the larger number of electrons, making the attraction between HI molecules stronger than between dichloroethylene molecules.
- Dipole-Dipole Forces: Dichloroethylene is a polar molecule with a partial positive charge on the hydrogen atom and partial negative charges on the chlorine atoms. HI is also a polar molecule with a partial positive charge on the hydrogen atom and a partial negative charge on the iodine atom. The positive end of the dipole in HI is attracted to the negative end of the dipole in dichloroethylene, creating dipole-dipole interactions between the two molecules.
Overall, the intermolecular forces between a hydrogen iodide molecule and a dichloroethylene molecule include both dispersion forces and dipole-dipole forces.