202k views
0 votes
(a^(-5)b^(7)c^(3))^(2)-:(a^(4)b^(-2)c^(2))^(3) What are the powers of a b and c

User Shishant
by
6.6k points

1 Answer

0 votes

Answer:

The powers of a,b and c for the given expression


((a^(-5)b^7c^3)^2)/((a^4b^(-2)c^2)^3)=a^(-22)b^(20)c^0} is -22,20 and 0 respectively

Explanation:

Given expression is
((a^(-5)b^7c^3)^2)/((a^4b^(-2)c^2)^3)

To find the powers of a,b and c:


((a^(-5)b^7c^3)^2)/((a^4b^(-2)c^2)^3)=((a^(-5))^2(b^7)^2(c^3)^2)/((a^4)^3(b^(-2))^3(c^2)^3) ( using the property
(ab)^m=a^m.b^m )


=(a^(-10)b^(14)c^6)/(a^(12)b^(-6)c^6) ( using the property
(a^m)^n=a^(mn) )


=a^(-10)b^(14)c^6.a^(-12)b^(6)c^(-6) ( using the property
(1)/(a^m)=a^(-m) )


=a^(-10-12)b^(14+6)c^(6-6) ( using the property
a^m.a^n=a^(m+n) )


=a^(-22)b^(20)c^(0)

Therefore
((a^(-5)b^7c^3)^2)/((a^4b^(-2)c^2)^3)=a^(-22)b^(20)c^(0)

The powers of a,b and c for the given expression


((a^(-5)b^7c^3)^2)/((a^4b^(-2)c^2)^3)=a^(-22)b^(20)c^0} is -22,20 and 0 respectively

User Andy Lindeman
by
6.6k points