Answer:
![5 โ(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bf0jzqpetx9cjinfizlkzpi16mqugc2q8y.png)
Explanation:
We want to find the distance between (-8,-4) and (2,-9).
We use the distance formula:
![d = \sqrt{ {(x_2-x_1)^2} +(y_2-y_1)^2 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4c40t8r1vfdjmeao5vyq9ng0u15ul07w5q.png)
We substitute the coordinates to get:
![d = \sqrt{ {(2- - 8)^2} +( - 9 - - 4)^2 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m719iu99d3epqi4he5g3i9eqkr04465mr4.png)
We simplify to obtain:
![d = \sqrt{ {(2 + 8)^2}+( - 9 + 4)^2 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dqhhw0rynts1nyehhhm1zxproihe3o54wd.png)
Add the numbers within the parenthesis to get:
![d = \sqrt{ {(10)^2}+( -5)^2 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d91bp7j85j2loygibcvqklxnp820vvd95u.png)
Find the squares of the numbers under the radical
![d = \sqrt{ {100}+25}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fdhpka0cobd0f0hdyh43houx0goplw1akl.png)
![d = โ(125) = 5 โ(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bplgeg6s6qb09iqob25prr7ysg6fiykcgc.png)