179k views
2 votes
Find the area of the region bounded by the hyperbola 25x2 − 4y2 = 100 and the line x = 3. (Using trigonometric substitution)

1 Answer

5 votes

Answer:

23.92

Explanation:

We solve for y:


25x^2-4y^2=100


y=5√(x^4/4-1)

use trig substitution:


x=2secu


x^2=4sec^2u

The derivative of x is:


dx=2secutanu du

when x=2
u=0

when x=3
u=sec^-^1\cdot(3/2)

The area is defined as 2xarea:

The area is the integral of the equation:


A=2\int\limits^a_b {5√(x^2/4-1) } \, dx for range 0 to sec-1(3/2)

Substitute x=2secu


A=\int\limits^a_b 10{√((4/4)sec^2u-1) } \, dx


A=10\int\limits^a_b {√(sec^2i-1)23secutanu } \, du

We know that sec²-1 = tan²u


A=20\int\limits^a_b {tan^2u secu} \, du


A=20\int\limits^a_b {(sec^2u-1)secu} \, du


A=20[\int\limits^a_b {sec^3u} \, du - \int\limits^a_b {secu} \, du]

After simplifying


A=10[secutanu-ln(secu+tanu)]

For the range


A=10[(3/2)√(5) /2-ln(3/2+√(5)/2)]


A=23.92

User Suthan Bala
by
3.8k points