Answer:
NH3 is the limiting reactant. O2 is in excess and there will remain 0.224 grams O2
Step-by-step explanation:
Step 1: Data given
Mass of NH3 = 2.25 grams
Mass of O2 = 3.38 grams
Volume of N2 = 0.450 L
Temperature = 295 K
Pressure = 1.00 atm
Molar mass NH3 = 17.03 g/mol
Molar mass O2 = 32 g/mol
Molar mass of N2 = 28 g/mol
Molar mass of H2O = 18.02 g/mol
Step 2: The balanced equation
4NH3 + 3O2 → 2N2 + 6H2O
Step 3: Calculate moles NH3
Moles NH3 = mass NH3 / molar mass NH3
Moles NH3 = 2.25 grams / 17.03 g/mol
Moles NH3 = 0.132 moles
Step 4: Calculate moles O2
Moles O2 = mass O2 / molar mass O2
Moles O2 = 3.38 grams / 32 g/mol
Moles O2 = 0.106 moles
Step 5: Calculate limiting reactant
For 4 moles NH3 we need 3 moles O2 to produce 2 moles N2 and 6 moles H2O
NH3 is the limiting reactant. It will completely be consumed (0.132 moles)
O2 is in excess. There will react 3/4 * 0.132 = 0.099 moles O2
There will remain 0.106 -0.099 = 0.007 moles O2
This is 0.007 moles * 32 g/mol = 0.224 grams
NH3 is the limiting reactant. O2 is in excess and there will remain 0.224 grams O2